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Abstract—The subject of this analysis is a homogeneous, isotropic and elastic circular cylinder subjected to
prescribed forces o1 displacementis at its surfaces. A general method of solution is presented with the help of
which one can satisfy exactly arbitrary boundary conditions prescribed on the curved and flat surfaces of a
hollow or solid cylinder of any length. Boundary conditions in displacements lead to the simplest presentation of
the solution and are, therefore, used to demonstrate the method. It is considered sufficient to solve two funda-
mental problems and then to use linear superposition to solve any other specific problem. The first problem deals
with satisfying arbitrary displacements on the curved surfaces of an infinitely long cylinder; while in the second
problem arbitrary displacements on the flat end of a semi-infinite cylinder are satisfied with zero displacements
maintained on its curved surfaces.

NOTATION
a, b outer and inner radit of the cylinder
{ length of the cylinder
o, w components of displacement of a point in the cylinder in the x, @, and r directions respectively
E,v elastic constants

Sir) g fr), Ay (r)  functions determining the radial variation of u, v, w in the First Fundamental Problem

u vector containing u, v, w (or ¥ and w in the axisymmetric deformation problem)

[43] vector containing f;, g,. ki,

X(x), ) 3 x 3 diagonal matrices

Am parameters

ty = d{ y/dr

P = Zrja

y = m+41 -

A, (E‘af) matrix whose columns form sets of linearly independent solutions for f;, g, and
H

A(r} matrix containing solutions for f, g, and #; when A = 0

FaAr), g20r), 2(r)  functions determining the radial variation of u, v, w in the Second Fundamental Problem

& vector containing /3, g5, i, (or £, and h;)

A{Ar/a) matrix whose columns form sets of linearly independent solutions for f,., g,, 4, (or f; and /)

vector containing six (or four) constants d;

d* normalized vector

E.(n eigenvector corresponding to the eigenvalue 4,

Eq(r) vector containing functions fy, g,. Ay {01 fo, #o) prescribed at x = 0

#{r) auxiliary vector containing three {or two) auxiliary functions

y(r) extended vector containing &{r} and n(r)

nofr) arbitrarily prescribed vector

¥olr) vector containing &,(r} and qy(r)

+ Formerly at: Department of Civil Engineering, Stanford University, Stanford, California.
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i = 21 —v}/(1-2v)
z{r) adjoint of y(r)

T(r) transformation matrix
To =T

S = TR = 87T

G, normalizing constant

1. INTRODUCTION

DETERMINING the state of stress and strain within a homogeneous, isotropic and elastic
circular cylinder subjected to prescribed forces or displacements at its surfaces, is one of
the classical problems of the mathematical theory of elasticity. The problem essentially
reduces to finding solutions to the equations of elasticity in cylindrical coordinates and
then adapting them to the prescribed boundary conditions at the curved and flat surfaces
of the cylinder. The method of series, wherein the solutions are assumed in the form of a
series of special functions, can be employed successfully to solve these equations. Poch-
hammer {1] and Chree [2] obtained very general solutions in this manner and expressed
them in Fourier-Bessel series. Chree has illustrated the use of these solutions in satisfying
various types of boundary conditions prescribed on the curved and flat surfaces of a solid
cylinder. Filon[3] presented a detailed investigation of a number of problems of the
equilibrium of a symmetrically loaded circular cylinder. However, neither of these authors
was able to achieve a complete freedom of prescribing arbitrary stresses or displacements
on all surfaces of the cylinder even considering only axisymmetric deformations.

Due to the practical importance of its solution, many authors [4-7] have since in-
vestigated this problem in various ways.t However, the solutions obtained are either
approximate or they are suitable for satisfying a certain class of boundary conditions only.
It is relatively simple to satisfy precisely the boundary conditions on the curved surfaces of
an infinitely long cylinder. For a cylinder of finite length then, one could satisfy arbitrary
boundary conditions on its curved surfaces precisely and in the light of Saint Venant’s
principle, boundary conditions on its flat ends could be satisfied in an approximate manner.
Of course, the resulting solutions are not useful if one wants to study stresses or deforma-
tions near the ends of the cylinder.

In the present paper we propose to develop a completely general method of solution,
with the help of which we are able to satisfy exactly any arbitrary boundary conditions
prescribed on the curved and flat surfaces of a hollow or solid cylinder of any length. In
order to be able to do so, we consider it sufficient to solve two fundamental problems
separately. In the first, we shall consider an infinitely long cylinder (Fig. 1) which is subjected
to known arbitrary boundary conditions on its inner and outer curved surfaces. We call
this the First Fundamental Problem. The solution of this problem alone does not permit
us the freedom of prescribing arbitrary boundary conditions on the fiat ends of the cylinder.
Hence, we must solve a second problem, in which we consider a semi-infinite cylinder sub-
jected to homogeneous boundary conditions on its curved surfaces and to known arbitrary
boundary conditions on its flat end. We call this the Second Fundamental Problem. If we
superpose the solutions of the second problem on those of the first, this does not affect the
boundary conditions prescribed on the curved surfaces in the first problem. This enables us

T Interested readers are also referred to the bibliography given by Lur’e [4] which lists relevant works of both
Western and Russian writers.
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i

FiG. 1. Cylinder geometry.

to solve the general case of a cylinder of any length subjected to arbitrary boundary con-
ditions on its curved and flat surfaces by suitably superposing the solutions of the two
fundamental problems.

At each point of the curved and plane surfaces of the cylinder three boundary conditions
must be prescribed. They may specify the components of the displacement or of the surface
traction or a mixture of both. Since we shall develop differential equations for the dis-
placements, boundary conditions in these quantities lead to the simplest presentation of
the solution and will, therefore, be used here to demonstrate the method. It should, however,
be noted, that in the case of prescribed surface tractions the procedure is substantially the
same. The working out of details may be left for a later publication.

We shall derive partial differential equations governing the displacements u, v, w of a
point in the cylinder and obtain their solutions suitable for the two problems. In the first
problem, the constants of integration can then be determined easily from the displacements
prescribed at the curved surfaces of the cylinder. The solution of the second problem is
considerably more complicated. Here, the homogeneous boundary conditions on the
curved surfaces r = b and r = a of the cylinder give rise to an infinite number of “eigen-
solutions”. However, the differential equations governing the eigensolutions are not self-
adjoint and also contain the parameter 4 in a linear as well as nonlinear manner. Hence,
the eigensolutions cannot be proved to form an orthogonal and complete set on (b, a). Thus,
one is unable to expand directly arbitrarily prescribed displacements on the flat end of the
cylinder, in a series of these eigensolutions. The only way to obtain such expansions would
then seem to be some numerical technique. Lur’e [4], in solving the axisymmetric stress
problem of a semi-infinite solid cylinder with zero loading on its curved surface, has tried
to evaluate the unknown constants in such expansions by approximation in the ‘“mean”.
However, this procedure involves many computational difficulties and hence becomes very
limited in its use.

In this paper we shall employ a method{ by which the constants in the series expansion
of the end conditions can be determined in a simple manner. By introducing certain
auxiliary functions (which are related to the original eigensolutions) we shall convert the
original non-self-adjoint equations into an equivalent first-order equation for an extended

t Oral communication by Professor G. E. Latta.
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eigenvector. The new equation, which is now linear in 4, can be shown to be in a self-
adjoint form as defined by Bliss [8, 9]. Hence, orthogonality and completeness of the set
of these eigenvectors can be deduced. With the help of these eigenvectors it is then possible
to expand arbitrary displacements prescribed at the flat end of the cylinder in a series of
the eigensolutions of our physical problem. This procedure is worked out in detail for the
case of a c¢ylinder under axisymmetric deformation, and can be extended easily to the
general case of nonaxisymmetric deformation as indicated. It could also be applied to the
plane stress problem of a semi-infinite rectangular plate subjected to homogeneous boun-
dary conditions on its longitudinal edges and arbitrary boundary conditions on its narrow
edge.

2. DERIVATION OF DIFFERENTIAL EQUATIONS

The material of the cylinder is assumed to be homogeneous, isotropic and linearly
elastic following the generalized Hooke’s law. With the assumptions that there are no
body forces and that the deformations are small, the following equations can be written [10]:

Equilibrium equations:

0t,, 101y, do, 1
e

e =90
or r d¢ @x+rt”‘
ot, 1do, o1, 2
B S -1,, =0 la—c
or rﬁ(p+6x+rT"" (la-c)
de, 101, 01, 0,—0,
o rde Ox s 0.
Kinematic relations:
_ ou w1 @ _ 6_W
= o * r rdp A=
_ 6u+@w
= T ax
(2a~f)
_ ov lau
* T 9x rde
_Llow v v
Tre rog or r
Hooke’s law:
E e, +a)
g, = - ~
* 1 1-2 x @
(I+v)( v) (3a. b)
E
6, =+ [(1 —V)g, + ve, +¢,)]

(1 +v)(1—2v)
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g, = (TE)I(ETET)[(I — Ve, + (e, +¢,)]
E

T myw (3c—f)
E

e T (14w
E

T o)

Substituting equations (2) in (3) and introducing the resulting expressions for the stresses
into equations (1), we obtain the following three partial differential equations for the
displacements u, v, and w.

1— 2v(02 1 du 102

LLou, 4 )62u 1162 62w 1ow)
2 \orr "rar r?og? -

ax2 T2\ 7 axdp oxor 7 ox

1 J%u +1—2v 8zv+lav v+6zv 1—v 621)+3—4v 1 6w+1 ’w
2roxdp 2 \or* ror r* ox? r2 09> 2 r*de 2rdrdp
1 *u 3—-4v 1 (71; 1 0% 0 )62w+1 ow 1 1-2v[1 62w+62 _o
——— = — W5t —— W] +—— =
20xor 2 r? a(p 2r drdp orr r or r? 2 \r?dp? ox?
(4a—)
The solutions of these equations will contain integration constants which should be

determined from displacements or stresses which may be prescribed at the curved and flat
boundaries of the cylinder.

3. THE FIRST FUNDAMENTAL PROBLEM

We ask for a solution which is periodic in x with the period 2l Such a solutiont is
given by

= X(x)®(@)E(r) ©)
where
cos l_x 0 0 W
X(x) = 0 sin Av: 0 , (6a)
0 0 sin B

+ Throughout this paper boldface capital letters denote matrices, boldface lower case letters columns (vectors).
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[ cos mo 0 0
Olp) = 0 sin meop 0 s (6b)
L 0 0 cos me
!’ fi(r)
&)= | & (6¢)
L hy(r)

and 4 = nna/l. When this is substituted in equations (4), the following system of simul-
taneous ordinary differential equations for the functions f}, g,, h, is found:

N : AZoAm A1
(1"2")( 1+;f1“;7f1}‘2(1““’)5‘2’ﬂ+; ?gl+;(h1+;hl)=0 {(7a)

Am L1 1 A2 m om_, m
;7f1+(1_zv)(gl +;gﬂ—;g1—;g1)—2(1—v)~;2-g1—7h1 "(3—4V);5h1 =0 {(7b)

A, m, m , 11 m? A2
“‘5f1+781“(3“4");‘2"g1 +2(1_V)(h1+;h1 ”;‘ih1) *"(1—2")("“2*4‘;2‘)}'1 =0 (7c)

where () = d( )/dr. The system (7) is of the sixth order. It may be easily verified by sub-
stitution that it has the following linearly independent solutions:

regular solutions:

fl - Im 0 })Im+pfm+1
m
81 = Ly _;Im‘“lmﬂ 0 8)
m
]71 = Im+l ;Im plm
singular solutions:
fl = Km 0 me—me-{-l
m
& = — Ky ;}‘Km—anl 0 ©)
m
hl = _Km+1 _;Km me

where y = m+4(1—v) and I, and K,, are the modified Bessel functions of the argument
p = Ar/a. The solutions (8) and (9) can be written as the six columns of a 3 x 6 matrix which
we shall denote by A,(Ar/a). A linear combination {(r) of these solutions is obtained by
postmultiplying A, by a column matrix ¢ containing six constants cy, ..., ¢s. When we
introduce this in equation (5) the solution for the displacements u, v, w takes the following
form

a

n = xun«mz\,(’”)c (10)
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The unknown constants c,,...,ce appearing in equation (10) are to be determined
from the displacements prescribed at the curved surfaces of the cylinder. We consider a
typical set of terms in the Fourier expansion of the prescribed displacements as follows :

Atr =aq, u = X(x)®(p)u,,, (11a)
Atr = b, u = X(x)®(p),,, (11b)
where
Upn -
W, = | U and W,, = | Up,
Winn Wmrl

are the known amplitudes of displacements at the boundaries. Introducing equations (10)
into (11), we arrive at the following set of six linear inhomogeneous equations for the
unknown constants ¢:

Al('l)c = Uy, (123)
Al(igf)c —u,, (12b)

After these equations have been solved for the constants c,,..., ¢, the displacements are
given by equations (10) and the stresses may be obtained from equations (2) and (3).
It should be noted that

A (4
det 14 # 0,

NG
a
which implies that under zero loading we must have zero displacements.
In the special case 4 = 0, solutions may be obtained by performing the proper limiting
process in equations (8) and (9) (and their counterparts corresponding to interchange of
sines and cosines in X(x)) or by solving equations (7) directly, which in this case become

equidimensional. We then obtain two linearly independent solutions for f; and four each
for g, and h,. We write them as the columns of a matrix A(r):

o0 0 r™ 0 0
An=|0 ™ty 0 rerD (—yt2myT (13)
0 —r ! (—y+2m+2)m+t 0 LU () VLY
. The corresponding constants c,, ..., ¢s can be determined as before from the equa-
tions:
Aa)e = 1,4 (14a)
A(b)e = T, (14b)

Thus, having solutions (8), (9) and (13), we are in a position to satisfy any arbitrary
displacements prescribed on the curved surfaces of the cylinder. We shall next discuss a
few special cases of interest.
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Special cases

In the case of a solid cylinder which is free of singularities, we require that the dis-
placements and stresses be finite at » = 0. The singular solutions (9) must then be dropped
altogether. Therefore, A,(4r/a) is now a 3 x3 square matrix containing only the regular
solutions (8). Furthermore, the general solution (10) for the displacements now contains
only three unknown constants in ¢, which can be determined as before from the three
boundary conditions (11a) at r = a.

The problem of self-equilibrating loads applied to a cylindrical cavity in a medium
extending to infinity in the radial direction can also be solved. In this case, we expect
displacements and stresses which die out for large values of r. Hence we must only retain
the singular terms (9) in our solution and solve for the three constants from the three
boundary conditions at r = b.

When m = 0 in equations (5, 6), u and w become independent of ¢ and the circum-
ferential displacement v vanishes. We thus obtain, as a particular case, the solution of the
axisymmetric deformation problem. This is a forth-order problem and, correspond-
ingly, four linearly independent solutions for f; and h, are obtained by substituting m = 0
in equations (8) and (9). The general solution for the displacements u and w then contains
four constants which are determined from boundary conditions at r = a and r = b. When
in equations (5, 6) we interchange sin mg and cos m¢ and then put m = 0, displacements
u and w vanish and v becomes independent of ¢. Two linearly independent solutions for g,
are then obtained by putting m = 0 in the solutions for g, in equations (8) and (9). The
general solution for the displacement v now contains two constants, which are determined
from the two boundary conditions at r = g and r = b. The problem thus solved represents
the twisting of a circular cylinder by loads applied at its curved surfaces.

4. SECOND FUNDAMENTAL PROBLEM

We now consider a semi-infinite cylinder subjected to zero displacements on its curved
surfaces r = a and r = b and to arbitrary displacements at its flat end x = 0. In equations
(4), we separate the variables by taking the solution in the form

fr(r)
u = OpkE(r)e ™™ where &)= | g,(r) {15a,b)
hy(r)

and ®{p) is defined by equation (6b). Introduction of equations (15) into equations (4) yields
the following three equations for f5, g, and h;:

1 2 A? Am A
(1"2")( ’2’+;f/2":l‘zfz) +2(1 ”’“V)‘&’z‘fz_

argz a

1
(h’2+;hz) =0 (16a)

Am 1, 1 A2 m*  m_, m
a7f2+(1-ZV)(g§+;g 2_?g2+;ig2) ‘2(1“")’},782—7}!2“(3‘4")72’12 =0 (16b)

A, m, m , b1 m? A
—;f2+;~g2—~(3~4v)r—2g2 +2(1—v)(h2+;h2-;§k2) —(1—2‘2){}7—?)}12 = 0. (16¢c)
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On solving these equations, we obtain the following six sets of linearly independent
solutions:

regular solutions:

f2 = J"' 0 VJm_me+1
m
82 =Jm+1 —;Jm+Jm+l 0 (17
m
hy =J, —Jm o
2 +1 p
singular solutions:
f2 = Ym 0 me_me+1
m
g2 =Y “;Ym+Ym+1 0 (18)
b= Yot oY,

where J,, and Y,, are the Bessel functions of the argument p = Ar/a. These solutions may
again be written as the columns of a 3 x 6 matrix, which we denote by A,(Ar/a). Any linear
combination &(r) can be written as the product of A, and a column d containing six con-
stants d,, ..., ds. Hence

u = ®(p)A,(Jr/a)d e, (19)

While the parameter A appearing in the solutions (8), (9) of the First Fundamental Problem

is known in advance, the parameter 1 in equation (19) is an eigenvalue, which must be

determined from the homogeneous boundary conditions on the curved surfaces. We con-
sider in detail the case that zero displacements are prescribed :

u(a, @, x) = 0, u(b, ¢, x) = 0. (20a, b)

Upon introducing equation (19) into (20), we obtain a system of six linear equations for the
elements of d:

A,(Ad = 0, A,(Abj/ald = 0. (21a,b)
For a nontrivial solution d the coefficient determinant of these equations must vanish:
A4
t [ ) } - 0. (22)
A,(4b/a)

This is a transcendental equation for A, which occurs in the arguments of the Bessel func-
tions and elsewhere. It has an infinite number of roots A4,(n = 1, 2,...) which, in general,
are complex. Of these we need only those which have a positive real part, since the solutions
for our end load problem of a semi-infinite cylinder are expected to die out with increasing x.

For each eigenvalue 4, (with positive real part), we can go back to equations (21) and
solve for the ratios d, ,/d, ,,...,ds,/d, ,. The matrix d, can then be written as d, = d,d*
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where d¥ is a normalized column matrix {1,d,,/d, ,,...,ds,/d, ,}. The corresponding
solution for the displacements may now be written using equations (19):

u, = 4, Q(Q)A,(4,r/a)dy e+,
and summation over all values of 4, represents the general solution of the problem:

u(r, ¢, %) = B(0) i 4,y (iyr/a) &% €250, 23)

n=

For each eigenvalue A, the product A,(A,r/a)d* is a column matrix which satisfies
equations {16) and homogeneous boundary conditions at r = g and r = b. We denote this
“eigenvector” by £,(r). Then

ur, ¢, x) = O(p) Zl d & (rye e, 24

It may be noted that when A = 0, the solutions (17), (18) degenerate to those given in
equation (13). The corresponding six equations replacing equations (21) have a coefficient
determinant which vanishes only when a = b, a case which is physically meaningless.
Hence, as one would expect, 4 = 0 is not an eigenvalue of our problem and we may dis-
regard such a possibility in our further discussion.

Solution (24) contains an infinite number of unknown scalar constants d, which must
be determined from the boundary conditions at the flat end x = 0 of the cylinder. We
choose to prescribe the three components of the displacement:

Soln)
u(r, 9,0) = ®(@)Eo(r) where Eor) = | golr) | - (25a,b)
ho(r)
Introducing equation (24) into (25a), we get
Eol) = T dE0) 6)
n=1

In this equation the vector &,{r) which represents the prescribed displacements, con-
tains real-valued functions. However, each term of the series on the right-hand sides of
equations (24) and (26) is a vector whose elements are, in general, complex valued functions.

In order to determine the constants d, in equation (26} we must be able to expand an
arbitrary known vector &4(r) in a series of eigenvectors §,(r) on the interval (b, a). This would
be a simple task if the vectors § (r) formed an orthogonal and complete set on the interval
(b, a). This, unfortunately, is not true. Equations (16) are not self-adjoint and the para-
meter 4 occurs in these equations as a linear as well as a nonlinear factor. The eigenvectors
& ,(r) satisfying such differential equations and homogeneous boundary conditions, cannot
be proved to form an orthogonal and complete set on (b, a).

At this stage, the only way to evaluate the constants 4, in (26) would then seem to be
some numerical technique. Lur’e [4], for solving a corresponding axisymmetric (m = 0)
stress problem, has obtained an equation similar to equation (26). He has then tried to
separate each term of the series on the right-hand side into real and imaginary parts in
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order to obtain two linearly independent sets of functions with two sets of constants pre-
sumably required for the simultaneous representation of two arbitrary stresses at the end
of the cylinder. The constants in the series are then evaluated by approximation in the
“mean”’. This procedure not only involves considerable computational labor, but it also
has the basic weakness that it cannot be extended to the case m > 0, in which the vectors &
have three components, It is really not necessary to separate the right-hand side of equa-
tion (26) into real and imaginary parts since, as we shall see later, only one set of constants d,,
is sufficient to prescribe three arbitrary displacements u, v, w (or # and w in the axisym-
metric problem) at the end of the cylinder. We shall now present a method [11] by which the
constants 4, in equation (26) can be determined in an indirect manner for arbitrary &(r).

To do this we introduce an auxiliary vector n,(r) (containing three elements) corres-
ponding to each eigenvector ,(r) and consider an extended vector

N
¥lr) = [F’ r)] @7
()

wherein n,(r) is chosen in such a way that the vector y,(r) satisfies a first-order differential
equation in which the parameter 4 appears linearly. It can be shown that the differential
equation and the boundary condition for y,(r) are in a standard self-adjoint form as defined
by Bliss [7, 8]. For such a system, the vectors y,(r) can be shown to form an orthogonalt and
complete set on (b, a), so that an arbitrary given vector yq(r)can be represented on (b, a) by a

series of y,(r). We take
Eolr)
Yolr) = [ o ] (28)
N1}

where £,(r) is the vector which we want to expand as in (26) while y{r) can be chosen
freely. Thus for a given &,(r) we can form different y,(r) by choosing different ny(r). How-
ever, for our problem, one convenient choice will suffice, for example ny(r) = 0. After y(r)
has been formed, the constants d, in the series

Yolr) = 2. doyil7) 29)
n=1

can easily be obtained using the orthogonality of the y,(r). From (27) and (28) we can see
that equation {29) could also be written as

Gol) = 3 450, o) = T dai)

The first equation is the same as (26). Thus by introducing an auxiliary vector n,(r) we have
succeeded in determining the constants d,, in (26) for a given &q(r).

It should be emphasized here that for a chosen y,(r) the constants d,, in (29) are uniquely
determined because y,(r) are an orthogonal and complete set of vectors on (b, a). However,
for a given §(r) different choices of no(r) will lead to different sets of constants d, from (29).
This means that a given vector §4(r) can be represented on (b, a) by a series of vectors €,(r)
in more than one way. However, for solving our problem, we need only one such expansion,

+ Here, the orthogonality is meant in a generalized sense.
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i.e., only one set of constants d, in (26). After this has been obtained, the complete solution
for the displacements is given by equations (24).

In the following section, the method discussed here is worked out in full detail for the
complete solution of the Second Fundamental Problem for a cylinder under axisymmetric
deformation.

5. SECOND FUNDAMENTAL PROBLEM—AXISYMMETRIC DEFORMATION

We now consider a semi-infinite circular cylinder subjected to zero displacements on
its curved surfaces and arbitrary displacements at its flat end x = 0. Under axisymmetric
deformation, the circumferential displacement v is zero and u, w are independent of ¢.
Equation (4b) is then identically satisfied while equations (4a, ¢) take the form:

1—2v[o*u 16u Pu 1[Pw 10w
T('é;‘f*; a‘) * ‘“")‘a;”z“”i(aa‘ﬁ; a) =0 (30a)
1 %u Pw loéw 1 1-2v &%w
2 axaﬁ“‘”’(ﬁﬁ 5;7””) T3 (306)
Taking
u = E(r)e " (31a)
where now
u fa(r)
u= [ J and &(r) = [ : } (31b,¢)
w hy(r)
we obtain two equations for f;, i, which we write in the following form:
A22t—v) . A 1
A - ! 32a
(rf?s) 2 1-2v rf2+a 1—2v(rh2+hZ) (32a)
P2 1-2 h, A 1
(rhyy = =2 Y ph, 22 rf (32b)

T e T g

Solutions of these equations can be written directly by letting m = 0 in solutions (17)
and (18). They are given below as the four columns of a matrix A,(ir/a):

b ;
I 4(1—1));10»‘-‘-;}1 Y, 4(1-1:)}1,—%)/1

Az(i—r) = (33)

Ar Ar

‘Il ']0 Yl _C~l— YO

a

where J, = Jy{ir/a) ete.

Following the same steps as in the preceding section, we obtain equations similar to
(21) and (22) for the constants d,,...,d, and the eigenvalues A, respectively. As before,
writing d,, = d, . d* and summing over all values of 4, (with positive real part), we arrive at
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the following solution for the displacements:

urx) = 3 dE ) e e (34)

where &,(r) = A,(4,r/a)d} is an eigenvector which satisfies the non-self-adjoint equa-
tions (32) and homogeneous boundary conditions ar r = a and r = b. Let the arbitrarily
prescribed displacements at x = 0 be given by

u(r,0) = Eo(r) where now Ey(r) = [f olr) } (35a, b)
ho(r)
Introducing equation (34) into (35) we get

Eolr) = ). d,&,(r). (36)
n=1

To determine the unknown scalar constants d, in equation (36), we now follow through,
in detail, the procedure described in the preceding section.

First let us rewrite the two equations (32) conveniently as a single matrix equationt for
the vector &(r).

(r€y = lL1€'+12L2§+lL3§+L4§ (37a)
where
i 0 1 r 21-v) r .
1-2va 1—-2v a?
Ll = ) L2 =
1 r 0 0 B 1-2v r
2A1=v)a 2(1—v) a?
L (37b-e)
! 0 0
a(l1-2v)
L3 = 9’ L4 = 1
0 0 0 —~
,

do not depend on 4. The boundary conditions for &(r) are
E&a) =0 and E(b)=0. (38a,b)
Now introduce an auxiliary vector
pr)
nr) = [ ]
q(r)

containing two functions p(r) and ¢(r), such that
g =PE+Qn, ' =RE+Sy, (392, b)

where P, Q, R, S are 2 x 2 matrices. We use (39a) to eliminate the second derivative in (37a)
and then use both equations (39) to eliminaten’ and . The resulting first-order differential

T Notations Q’, Q! and Q7 denote respectively the differentiation with respect to r, the inverse and the
transpose of a given matrix Q.
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equation for § becomes identically satisfied by any & if we require that the coefficients of &’
and & vanish for all 4. (Of course, & and n have then still to satisfy equation (39)). This
procedure yields the following two matrix differential equations:

P+QSQ '+rQQ '—JL, =0, (40a)

1 1
P'+-QR--QSQ 'P-QQ 'P—#’L, ~il,~L, = 0. (40b)

It can be seen that in order to choose nontrivial matrices P, Q, R, S such that equations (40)
are identically satisfied for all values of 4 these unknown matrices must depend on A
Looking at the form of equations (40), we can see that it is sufficient to consider these
matrices to be linear in 4. We take them in the following form:

P=P,+iP, Q=4iQ, R=/R,, S=S,+iS, (41a—d)

The new 2 x 2 matrices on the right hand side are the unknowns to be determined. To do
this, we introduce equations (41) into (40) and equate to zero the coefficients of all powers
of 4. This gives us the following five matrix differential equations:

Py+Q,8,Q7 " +rQiQ; ' = 0 (422)

P,+Q,S,Q;!-L; =0 (42b)

%QIRI—%QISIQ,“PI—LZ =0 (420)
Pi—QiS6Qi Py~ Q:8,Q; Po—QiQ; P, ~Ly = 0 (@2
Po—Qi50Qi 'Pa=Q\Q; Py Ly = 0. “2)

Since these equations contain six unknown matrices Py, P, Q,, R;, Sy and S,, their
solution is not unique. For our purposes, any solution will do. A simple one was obtained
by assuming the matrix Q, to be diagonal and independent of r and then solving the
somewhat simplified equations. The results are as follows:

1 r
0 L
P — 0 P, = 1-2va
0 , (43a,b)
0 1 0 0
~ _ 2
Hy 0 T2 0
. , R, = 43¢, d)
Q= 0 1 ! 0 2v r? (
L # -2
[0 o 0 0 Ben)
= b e,
> 0 1 S T (
- T 1-2va

where u; = 2(1 —-v)/(1—2v).
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These matrices look so simple that further efforts to get a simpler solution of equations
(42) are unwarranted.

Using equations (43), the matrices P, Q, R, S are completely determined for each 4
from equations (41). Now equations (39) can be written as a single equation for an extended
vector y(r), when we substitute equations (41) in them. We get

ry’ = Ay+ iBy (44a)
where
f2(r)
&r) h,(r)
y(r) = = (44b)
n(r) (r)
q(r)
0 0 0 0
P, O 0 1 0 0
A= = (44(:)
0 S, 0 0 0 0
0 0 0 —1
B 1 r N
O T2 H 0
1
0 0 0 -
P Q 7
B==[£ sﬂ — . ! (44d)
1 L —23 0 0 0
0 2v r B T
L 1—2"Ma2 1234 i

We have now succeeded in converting our basic equation (37a) into equation (44a)
for the extended vector y(r). The matrix equation (44a) represents a system of coupled first-
order equations, in which the parameter A occurs linearly. Boundary value problems for
such equations have been treated in detail by Bliss [7, 8]. Following his treatment, we shall
deduce orthogonality relations for any two extended vectors y, and y,, corresponding to
two different values 4, and 4,, of L.

Before doing this we must note that the auxiliary vector n(r) depends on () and 4 and
can be determined from equations (39a) and 41):

nr) = ‘Ql g — Q1 'PoE —Q; 'P&. (45a)
Substitution from equations (43) and (31¢) enables us to write explicitly:
1 r
p(r) -—£ (1—2w
() = = (45b)

r 1
q(r) By hy—pyhy
) A
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hence
r £ 7
h2
E(r) (46)
y(r) = Lifzf_Ll_fhz .
n(r) A7t p(1=2v)a
r 1
i /111’12'_/111}’2 )

For every known eigenvector &,(r) satisfying equation (37a) and boundary condition
{38) of our physical problem, we can form from equations (46) an extended vector y,(r) which
satisfies equation (44a). Boundary conditions satisfied by y,(r) can be written in the follow-
ing form, using equations (38):

M, y(@)+N,y(b) = 0 (47a)
where
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
M, = , N, = (47b, c)
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
Orthogonality relations for y(r)
We are considering a system
ry’ = Ay+ ABy (44a)
repeated
M, y(a)+N,y(b) = 0 (47a)
repeated

wherein A, B, M, N, are all real and continuouson b < r < a: while 2and y will in general
be complex. A system adjoint to equations (44a) and (47a) has the form

(rzy = —A"z— Bz (48a)
and

M?z(a)+ Niz(b) = 0 {48b)
where M, and N, are two matrices which can be easily chosen so that

M,M,—N,N, = 0. (48¢)

The boundary value problem defined by equations (44a) and (47a) is called *‘self-adjoint”
if the differential equations and the boundary conditions of its adjoint (48) are equivalent
to its own under a non-singular transformation z = Ty (see Bliss [8,9]). When we sub-
stitute for z in equations (48) and compare with equations (44a) and (47a), we get the follow-



The problem of an elastic circular cylinder 413

ing equations for determining the transformation matrix T:
rT'+ATT+TA+T =0, B'T+TB =0 (49a, b)
M]T = AM,, NIT = AN,

where A is a nonsingular matrix containing arbitrary constants. The last two equations
may be combined into a single equation by using equation (48c):

M, T 'M!/—N,T"!NT = 0. (49¢)

When we substitute values of matrices A, B, M,, N, in equations (49), it can be seen
that all three equations can be satisfied by taking

T= %TO (50a)
with
0 0 Uy 0
0 0 0 -1
T, = . 0 0 (50b)
0 1 0 0

It should be noted that the matrix T{r) is real, single valued and has continuous deriva-
tiveson b < r < q, (b # 0). It is also skew-symmetric and nonsingular.

Let us now consider two vectors, y,, and z, corresponding to two distinct values 4,
and 4,, respectively, of A. Premultiplying equation (44a) by z! and postmultiplying the
transposed equation (48a) by y,, we get the following:

25 (ry,,) = 2] Ay,,+ 1,21 By,,
and

(rzz)/Ym = - z:Aym - j'nerI-Bym'
Addition of these two equations gives
(rz:‘ym)/ = ()'m - j’n)ZVTI‘Bym'

If we now integrate with respect to r from b to a and substitute z, = Ty, = (1/r)T,y,, we
get

(Am— in)f Y2 T™By, dr = [yI T{y.Ji—p (51)
b

On expanding the right hand side and substituting boundary conditions (47) or (38),
one can see that it vanishes and hence for m # n,

f Y2 Sy, dr =0 (52a)
b
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where we have used the notation

% 0 0 0
2v r iy
0 AT
_ —2"Ma7 a1
S=T7B =B'T = , (52b)
0 ad e 0
a(l—2v) ¥
0 0 0 L
#1”J

Thus we have shown that any two distinct vectors y,, and y, are “orthogonal” on (b, a)
with respect to a “weight function” matrix S(r). It should be noted that S is real, symmetric
and nonsingular.

Expansion of an arbitrary vector

Having obtained a complete orthogonal sett of vectors y,, we are in a position to
expand an arbitrary given vector y, on (b, @) in a series of vectors y,. Let

Yo = Z d,y,.(r). (53a)
n=1

Then, using orthogonality relations (52), we have constants d, in the series given by:

a

d, == | yiSyodr (53b)
(’n b
where G, are the “normalizing constants:”
G, = [ yiByar (53¢)
b

Constants d, and G, will, in general, be complex.

Now we can go back to our physical problem in which we wanted to expand a given
arbitrary vector &4(r} in a series (36) of eigenvectors § (7). For every & {r), a corresponding
vector y,(r) is known from equations (46). Also for a given &4(r) we can choose n,(r) arbi-
trarily and form an extended vector yq(r), which can be expanded into the series (53a).
Hence the constants d,, in the series (36) are completely determined from equations (53b, c).
Here one should recollect what was emphasized earlier ; namely, that the constants 4, in
expansion (36} are not uniquely determined for a given &y(r). They depend on y, which can
be formed in more than one way by choosing n,(r) differently each time. For our purpose
it is sufficient to have only one such set of constants which can be determined by choosing
No(r) most conveniently (zero, for instance). After this has been obtained, the complete
solution for the displacements of the cylinder is given by equations (34).

We are thus able to solve the Second Fundamental Problem by expanding the dis-
placements prescribed at the end of the cylinder into a series of eigenvectors. The constants

+ Theorems on completeness of a set of such vectors, etc. are not the subject matter of this work and the

reader wishing to look more deeply into these matters is referred to Bliss [8, 9] who has proved similar theorems
for ““definitely” self-adjoint boundary value problems.
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in this series can be obtained from equations (53b) by simple integration. Further, we shall
obtain in the following sections a general expression from which the normalizing constants
G, can be obtained directly without any integration.

Orthogonality in the case of a solid cylinder

The derivation of the orthogonality relation (52) needs some modification when we
consider a solid cylinder. In this case, equation (51) becomes

(A=) f Y2SYndr = [yr Ty, o
(1]

At r = a we still prescribe zero displacements, hence equation (38a) still holds true. How-
ever at r = 0 we only require that the displacements and their first derivatives be finite.
Substituting from equations (46) and (50} in the right-hand side and expanding we see that
all terms vanish except one. We get

b 1
P = Ay

Am

m

=12 | Y180 dr = =222 (O ) (54)
v}

Solutions for h,(Ar/a) are found in the second row of the matrix A,(4r/a) in equation (33).
For the solid cylinder we have to consider only the two regular solutions from these and it
can be seen that they both vanish when r = 0. Substituting this in the above equation we
can once again establish the orthogonality relation (52) in the case of a solid cylinder. Due
to the presence of a factor (4,,— 4,) on both sides of equation (54) one is led to suspect that
the integral on the left-hand side of this equation may be zero also when m = n. However,
this integral for m = n (i.e,, the normalizing constant) can be evaluated and checked to be
non-zero. This has been done later, for the example of a solid cylinder, by using the general
expression for the normalizing constants derived in the next section.

Normalizing constants

To evaluate the constants G, in equation (53c) directly without integration, consider
two solutions y(r, 1) and y(r, u) of equation (44a) corresponding to two distinct values A
and u of the parameter A, not necessarily eigenvalues. Let these solutions also satisfy the
boundary conditions:

le(b’ '{) = 05 le(ba .u) = O
This implies that the corresponding vectors &(r, ) and &(r, u) satisfy equation (37a) and
only one homogeneous boundary condition (38b) viz:
Eb,A)=0 and E(b,u)=0.
Hence, these two vectors do not correspond to the eigenvectors of our problem but

will do so only when they also satisfy the second homogeneous boundary condition at
r = a {equation (38a)). The vector y(r, u) satisfies the equation:

ry'(r, 1) = Ay(r, p)+ uBy(r, u).
Also from equation (48a) we can write

ra(r, )] = —ATa(r, 2)— iBT2(r, 4)
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as the adjoint of the equation satisfied by y(r, 4). Premultiplying the first equation by
z7(r, 2) and postmultiplying the transposed second equation by y(r, u) and adding, we
arrive at the following equation which corresponds to equation (51).

(=) f ¥7(r, 8lr, ) dr = [y7(r, ATIy(r, )l =3

Expanding the right-hand side by substituting for T, and y from equations (50b) and (46)
and using the boundary conditions at r = b one can see that it vanishes at the lower limit.t
Dividing the remaining terms by (u— 4) for u # 4 we get:

“ e 1 tja \ ,
J. yT(r’ }v)SY(", ﬂ) dr = w{:z {le(aa /“)f2(as ;1) - #1}’2(0’ A)hz(d, ﬁ)}

b H—4
+§{ — fola, Dfa )+ pyhala, a1}

1
1—2v

. i
{hZ(a3 Z)f;'l(as ﬂ)’fz(& A)hz(‘% ﬂ)}} +Eu1h2{aa i)hz(a, lu)‘

Now taking the limit as 4 — A and using L’Hospital’s rule to evaluate this limit on the
right hand side, we get

“ — af,. .0 , , 0,
|y, 8yt ar = {f,;(a, B 3hila, )= mhia A5 hala, )

b

é a
= faa Az fia, A+ uihola, D) bola, )-)}
L &

i
1 A . NG )
T {hz(a, A) 5 Sfola, Y= fila, A)gihz(a, x,)}
1 0
+= pyhy(a, A= hyla, A).
A oA

This equation is valid for any value of A not necessarily an eigenvalue. When 1 is an
eigenvalue 4, of the problem then &(r, 4,) must satisfy the homogeneous boundary con-
dition at r = a, ie., &(a, 4,) = 0. Substituting this in the preceding equation, and writing
y{r} for y(r, 4,) etc., we get

a , ¢
—= ﬂxkzn(a)["r hs(a, 11)] - (53)
Aoy 04

A= Ap

a ;
G,= [ ¥iSy,ar = ;“~f2',,<a>[-§i:f2<a, z)}
b ' s A= 2
On the right hand side of this equation fy(a, A} and h,(a, A) are the values at r = a of
the two functions f,(r, i} and h,(r, 1) forming the vector &(r, A} which satisfies the dif-
ferential equation (37a) and only one boundary condition &(b, A) = 0. Further, when
A= 2,, then &(r, 4,) satisfies the second boundary condition §(g, 4,) = 0, i.e, it coincides
with the eigenvector §,.

+ In the case of a solid cylinder the right hand side can be shown to vanish at the Jower limitr = 0 by the same
reasoning as was used in the last section.



The problem of an elastic circular cylinder 417

With the help of equation (55) the evaluation of the normalizing constants becomes a
simple matter. In the next section, we shall use this equation to get the constants G, for a
solid cylinder.

Example

We illustrate the method of solution discussed so far, by solving a problem of a semi-
infinite solid cylinder under axisymmetric deformation. The cylinder is subjected to zero
displacements at its curved surface r = a and the following displacements are prescribed
atits flatend x = 0:

u(r,0) = fo(r) = r(1—r/a) w(r, 0) = hy(r) = 0. (56a, b)

The solution for displacements consists only of the regular solutions and can be written
down explicitly as follows by taking the first two columns of the matrix A,(4r/a) in equa-

tion (33),
ulx,r) = [dl-]()(:g) +d2{4(1 _V)Jo(g) —%Jl(%)}] e~ Ax/a

a2
w(x, ) = [lel( r) +d2;’JO(;’)] e~ Axla

a

(57a,b)

where d, and d, are unknown constants. The boundary conditions at r = a give us two
linear homogeneous equations for d, and d,:

dJ oD+ dy {41 =W o) — AT, (A} =0,  dJ(D)+dyAdold) = 0. (58a,b)

For non-trivial solutions of d, and d,, we get the following transcendental equation for the

eigenvalues 4,:

where we have introduced a notation j, = J4(4,), etc. Though 4, = 0 is a solution of
equation (59), we have proved earlier that it gives trivial eigensolutions and hence need not
be considered.
For the product of two Bessel functions of integral order, we can write the following
formula
A‘ 2r
5

Substituting this in equation (59) and dropping a common factor 4, we get

= (~ 172! 2+ (4N
,go(r!)3(r+1)![1_2(1_v)r+1]("2“) =0 (60)

as the equation for determining A,. The left-hand side is a polynomial of infinite degree in
/ and has infinitely many roots 4,. For v between 0 and 0-5 the term inside the bracket can
be seen to be always negative. By substituting 4, = iA where A is real, we can show that
the equation does not have any purely imaginary roots 4,. Since the equation contains
only even powers of /4, with real coefficients, the roots will be complex conjugates occurring
in groups of four, viz.:

l)"‘“‘ < (=1y(m+n+2r)!

"m“)J"()“)=(§ L rom ) ne )t )]

Ay = a,+iby, Ay = —a,—iby,

Ay =a;—ib;, A, = —a,+ib,.
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For our semi-infinite cylinder we need only the roots with positive real part. For every
such root 4, we can get from equation (58b)

dl,n — —/11 19
d2,n "jl

Hence from equations (57) the eigensolutions f,,(r) and h,,(r) can be written as

Furlr) = —Anji’Jo() ’)+4(1—v)J0(“) Wi (“)

a

j Ay Ar

hanr) = —A,,j.—"Jl( . ) 7%( : )
1

(61a, b)

Summing up over all values of 4,, the solutions (57) can be written in the form of infinite
series containing a set of unknown scalar constants d,,,

D= Y difalr)e
n=1

(62a,b)
w(x, 7) Z d,h,,(r) e *n0a,
From boundary conditions (56) there follows that
12 = £ s 0= 3 dhad (63a,0)
n=1 n=1

These equations are equivalent to equations (36) which were written in matrix notation.
From equations (53) an expression for the constants d, can be written down at once:

1 a
dy =~ fy:‘§yo dr (64)
Gn 0

where y, is obtained by substituting equations (61) into equations (46) and S is given by
equation (52b). We shall choose conveniently n,(r) as zero and hence

r(l1—r/a)
Eo(r) 0
= (65
Yo~ [nom} 0 )
0

Then
f y7Syo dr = f A L ra)fonlr) dr
0 o a4

Introducing f,,(r) from equation (61a), integrating and simplifying by using equation (59),

we get
3
fy,.TSycdr— [10—16 ]—1+{ jl}{f Jo(p)dpﬂ- (66)
/'n /"n )'n Jo 0o
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Next, we find the normalizing constants by using equation (55). Guided by equation (61)
for the eigensolutions, let us take two solutions f,(r, 1) and h,(r, 2) as a linear combination
of the linearly independent solutions in the following form:

X Jo(A) . [Ar A\ ArAr
fz(r, A.) = —AJI(/{)JO(;) +4(1—V)J0(;)—;J1(—(‘;) (673)
o J oA . [Ary Ar _ [Ar
hy(r, ) = _AJI(A)Jl(—d_) +—£;J0(;). (67b)

These two functions obviously satisfy the differential equations (32) or (37a) and the
conditions of finiteness at r = 0. Furthermore, when we substitute 4 = 4, in these equa-
tions, they become identical to the eigensolutions f,, and h,, in equations (61). Introducing
equations (61) and (67) into (55) and simplifying by using equation (59), we get the following
simple expression for the normalizing constants:

G, = 4(1-v)[4(1 - v)ji —2(1 - 2v)j3]. (68)

The constants d, in equation (64) are completely determined when we evaluate equa-
tions (66) and (68). Then the complete solution for the displacements of the cylinder is
given by equations (62). If the prescribed displacements are different from those considered
in equation (56), only the integral in equation (64) needs to be reevaluated while the expres-
sion for the constants G, remains the same as in equation (68).

We prescribed real displacements (56) and hence we expect the solutions (62) to be real.
Though each term in the series on the right-handed sides in equations (62) is complex due
to complex values of 1, their sum is expected to come out to be real. This can be easily
proved as follows.

Since the eigenvalues A, will always occur in complex conjugate pairs, consider two
eigenvalues 4, and 4, such that 4, = 1,, where 1, is the complex conjugate of 4,. It is easy
to see from equation (61) that &, = £, and then y,, = y,, G,, = G,, etc.

When the prescribed displacements are real, £4(r) is real and since n,(r) was chosen zero,
also y(r) in equation (65) is real. Hence, from equation (64), the constants d, and d,, will be
complex conjugates also. It follows then that in the solutions (62) the series on the right-
hand side are composed of an infinite number of terms occurring in complex conjugate
pairs. Hence addition of all such terms will give only real displacements as required.

It is worthwhile to note the relative simplicity with which we were able to get an exact
solution of this complex problem. The method presented can be used without difficulty
to solve any general case. Problems concerning hollow cylinders under axisymmetric
deformations can be solved completely by using the analytical results obtained here. For
problems involving hollow or solid cylinders under general (non-axisymmetric) loading,
the procedure is exactly the same and was already discussed before. In this case, to determine
the auxiliary vector n(r) we make substitutions as in equations (39); the only difference
being that the vectors § and n now each contain three elements instead of two and the
matrices P, Q, R, S are 3 x 3 instead of 2 x 2. From thereon the procedure follows the same
steps as illustrated in the axisymmetric problem and presents no other difficulties but only
an increased amount of algebraic computations.

Acknowledgement—The authors wish to thank Professor G. E. Latta of Stanford University for oral communica-
tion of results of his recent work, which have helped substantially in solving the present problem.
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AGcrpakT—ITpeqMeTOM 3TOTO aHANMK3a ABIAETCH OQHOPOAHBIN, H30TPOMHBIN, yIPYTHil, KPYTJIbIH IMIIHHAD,
MOJBEPKEHHBIA NEHCTBUIO HEKOTODPbIX CHJI MM TMEPEMELUSHHI HAa CBOMX IMOBEPXHOCTAX. IIpuBOAMTCA
OOLIMA METOH pELLEHHs], ¢ MOMOLUBIO KOTOPOTO MOXHO OIPEAE/IMTE TOYHO MPOH3BOJIbHbIE TPAHHYHbIE
YCIAOBHSA 3aaaHHbIE HA KPHBBIX M TUIOCKMX NMOBEPXHOCTAX TOJOTO WM MOJHOrO LHJIMHAPA MPOH3BOIBHON
anuBbl. I'paHuYHbIE YCIOBUA B MEPEMELLEHHAX NPHBOAAT K HaubGoee IIPOCTOMY BHAY PELUEHHS H, TOITOMY
HCIIOJIB30BaHbl JIS BBISCHEHHA MeToaa. [lOcTaTroyHO pewMTh aBa (yHAAMEHTANIbHBIE 3afayd M najee
WCIIONB30BaTh JIMHEHHYIO CYIEPIO3ULIMIO LIS pacuera Kakux nubo apyrux cnenubuyHblx 3apay. B nep-
BO#t 3aJaye PacCMaTPHMBAETCS DPELLEHUE MPOU3IBOJILHBIX NEPEMELILCHUNA HA KPHUBBIX INOBEPXHOCTAX Oecko-
HEYHOTO AJIMHHOTO LIMJIMHAPA, TOTAa KAK BO BTOPOIl 3ajaye PelualoTCs MPOU3BOJbHbIE NEPEMEILEHHS Ha
IUIOCKOM KOHLE MOJIyOECKOHEYHOTO LMIMHAPA, NPU HYJIEBHIX IEPEMELICHUsIX, MOAB/SIOIIMXCA Ha €ro
KPHBBIX IOBEPXHOCTSX.



